The Tumor Suppressor DAP Kinase Is a Target of RSK-Mediated Survival Signaling
نویسندگان
چکیده
The viability of vertebrate cells depends on a complex signaling interplay between survival factors and cell-death effectors. Subtle changes in the equilibrium between these regulators can result in abnormal cell proliferation or cell death, leading to various pathological manifestations. Death-associated protein kinase (DAPK) is a multidomain calcium/calmodulin (CaM)-dependent Ser/Thr protein kinase with an important role in apoptosis regulation and tumor suppression. The molecular signaling mechanisms regulating this kinase, however, remain unclear. Here, we show that DAPK is phosphorylated upon activation of the Ras-extracellular signal-regulated kinase (ERK) pathway. This correlates with the suppression of the apoptotic activity of DAPK. We demonstrate that DAPK is a novel target of p90 ribosomal S6 kinases (RSK) 1 and 2, downstream effectors of ERK1/2. Using mass spectrometry, we identified Ser-289 as a novel phosphorylation site in DAPK, which is regulated by RSK. Mutation of Ser-289 to alanine results in a DAPK mutant with enhanced apoptotic activity, whereas the phosphomimetic mutation (Ser289Glu) attenuates its apoptotic activity. Our results suggest that RSK-mediated phosphorylation of DAPK is a unique mechanism for suppressing the proapoptotic function of this death kinase in healthy cells as well as Ras/Raf-transformed cells.
منابع مشابه
Changes in expression of klotho affect physiological processes, diseases, and cancer
Klotho (KL) encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of tar...
متن کاملMitogen-activated protein kinase pathway-dependent tumor-specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad.
Mitogen-activated protein kinase (MAPK) signaling regulates fundamental cellular functions including proliferation, differentiation, and survival. We have demonstrated previously that inhibiting MAPK signaling induces apoptosis in melanoma cells but not in normal melanocytes, suggesting that the MAPK pathway propagates essential survival signals in melanoma cells. Here, we report that the 90-kD...
متن کاملInactivation of the Proapoptotic Protein Bad Tumor-Specific Survival Signaling in Melanoma Cells Mitogen-Activated Protein Kinase Pathway-Dependent
Mitogen-activated protein kinase (MAPK) signaling regulates fundamental cellular functions including proliferation, differentiation, and survival. We have demonstrated previously that inhibiting MAPK signaling induces apoptosis in melanoma cells but not in normal melanocytes, suggesting that the MAPK pathway propagates essential survival signals in melanoma cells. Here, we report that the 90-kD...
متن کاملRSK isoforms in cancer cell invasion and metastasis.
Metastasis, the spreading of cancer cells from a primary tumor to secondary sites throughout the body, is the primary cause of death for patients with cancer. New therapies that prevent invasion and metastasis in combination with current treatments could therefore significantly reduce cancer recurrence and morbidity. Metastasis is driven by altered signaling pathways that induce changes in cell...
متن کاملMultiple Low Doses of 5-Fluorouracil Diminishes Immunosuppression by Myeloid Derived Suppressor Cells in Murine Melanoma Model
Background: Melanoma progression and metastasis is suggested to be mediated by increased accumulation of myeloid derived suppressor cells. Various chemotherapeutic drugs such as 5-Fluorouracil in single low concentration have the capacity, at least in part, to reverse tumor progression by reducing myeloid derived suppressor cellsmediated immunosuppression. Objective: To assess whether multiple ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005